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Erosion and transport of sediments and pollutants in the benthic boundary layer
on the San Pedro shelf, southern California

by
H. A. Karl, D. A. Cacchione, and D. E. Drake
INTRODUCTION

This report describes the results of the San Pedro Shelf Experiment (SPEX-1),
a research project funded jointly by Bureau of Land Management-U.S. Geological Survey
under Memorandum of Understanding AA551-MU-8-10. The proposal entitled "Erosion and
transport of sediments and pollutants in the benthic boundary layer on the
San Pedro shelf, southern California "submitted by the principal investigators
details the specific terms and objectives of this research investigation. The
basic goals of the experiment are to identify: 1) transport vectors of pollu-
tants and sediments in the benthic boundary layer (BBL) at specific sites on the
San Pedro continental shelf; 2) the major transport mechanisms operating in this
region and to evaluate their relative importance; 3) areas of excessive erosion or
deposition that could affect sea-floor pipelines or drilling structures constructed
on tracks developed in Lease Sale No. 35.

Data necessary to accomplish these objectives were collected during two
cruises in Spring, 1978. The first cruise, 17-29 April, used the USGS research
vessel SEA SOUNDER to deploy instruments and to conduct specific site and
regional hydrographic, geologic and geophysical surveys. The second cruise,
5-9 June, used the University of Southern California's research vessel VELERO IV
to retrieve moored and bottom instruments, and to collect some limited regional
transmission and suspended sediment data. Figure 1 shows the study area; Figure 2
shows station locations, and Figure 3 shows geophysical survey lines.

STUDY AREA AND PREVIOUS WORK

The continental shelf off southern California consists of a series of
littoral transport cells bounded on their downdrift ends by submarine canyons
(Emexy, 1960; Inman and Frautschy, 1966). San Pedro Bay, the region of study,
encompasses the cell which begins just east of Palos Verdes Peninsula and
terminates where Newport Submarine Canyon incises the shelf at the east end
(Fig. 1).

San Pedro shelf is a broad, gently sloping platform extending, at its
widest point, about 20 km from shore to the shelf break (75-90 m isobath) and
narrowing to about 3 km at its east and west boundaries. In addition to Newport
Canyon, which heads close to shore, two canyons, San Pedro Sea Valley and
San Gabriel Canyon, indent the outer portion of the shelf.

Most previous studies of San Pedro Bay and environs emphasize descriptions
of geology, surficial sediment distribution and the general circulation patterns
of surface waters (Moore, 1951, 1954; Emery, 1960; Bunnell, 1969; Pirie et al.,
1975). A few investigators described the hydrodynamic climate in more detail
and speculated on processes and routes of sediment transport (Horrer, 1950;
O'Brien, 1950; Caldwell, 1956; Vernon, 1966; Felix and Gorsline, 1971; Gorsline
and Grant, 1972; Hendrichs, 1976a,b). A BLM base-line study of the southern
California borderland included portions of San Pedro shelf (Fischer et al., 1976;
Douglas et al., 1979). Recently, Karl (1976) completed a 4 year study of sediment
dynamics on southern California shelves with particular focus on San Pedro shelf.
Karl (1976; in press a,b) found evidence of significant sediment transport both
at the bottom and throughout the water column.
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METHODS

In this experimental program, we undertook regional geologic sampling, geo-
physical surveys and oceanographic measurements to establish  the spatial varia-
bility of the sea-floor and near-bottom water properties of San Pedro shelf. Time
series data derived from moored instruments illustrated the temporal variability
of several physical oceanographic parameters and processes, and water borne sediments.
In addition to regional sampling during the April cruise, a single station was
occupied for 24 hours during which time discrete measurements of several parameters
were made at hourly intervals. Table I summarizes the operations performed at each
regional station and Table II lists each operation performed during each hour at
the 24-hour anchor station.

Substrate

An NEL box corer and Soutar Van Veen were used to collect samples of the
substrate in order to characterize sediment size distributions at each of the
moored instrument sites. Size distributions were determined in the laboratory
by standard pipette techniques for the fine (<62 um) fraction and by settling
tube techniques for the coarse (> 62 um) fractions.

A TV/70 mm camera system was used to identify and map the distribution of
small-scale bedforms and other features on the sea-floor. The TV monitor
onboard enabled real-time viewing of the sea-floor as the ship drifted for
several minutes over a station. TV images and verbal descriptions made by the
viewing scientists were recorded on video tape. The 70 mm camera could be
triggered remotely to photograph features of particular interest viewed on the
TV monitor. The 70 mm film was developed onboard ship. Printed enlargements
have been made to analyze bedforms and other features.

Geophysical data consisted of: 1) bathymetric profiling using a 12 kHz
system; 2) high-resolution sub-bottom profiling using 800 Hz and 3.5 kHz systems;
and 3) side-scan sonar profiling.

Water Column

A profiling CTD was used to obtain a nearly continuous vertical profile of
temperature and conductivity. The CTD data were displayed in analog form
graphically on board ship, and recorded digitally on magnetic tape. The digital
data were corrected for instrument calibration and replotted as depth profiles of
temperature, salinity, and density (sigma s). Turbidity of the water column was
measured with a profiling light-beam transmissometer; increasing percent transmission
indicates decreasing turbidity (less suspended matter in the water column).
Absolute concentrations of total suspended matter (TSM) was determined by con-
ventional methods. Water at the surface was sampled with a bucket; water 1 m
above bottom was sampled using a 5-liter Niskin bottle modified to close when
a weighted line contacted the seabed, and 5-liter Van Dorn bottles were used to
sample water at intervals between the surface and the bottom. Sampling intervals
were chosen by inspecting the transmission record for that station. At sea, aliquots
of water from these samples were passed through preweighed Nuclepore* filters
(nominal pore size, 0.4 um); the filters were rinsed with distilled water and
placed in covered petri dishes. Onshore the filters were dried and weighed, and
the concentration of TSM calculated as milligrams of suspensate per liter of sea-
water. In addition, a portion of each filter from two transects was combusted to
determine the percent non-combustible residue and the percent organic matter. At
selected anchor stations a profiling current meter was used to measure current
speed and direction.
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TABLE II

Operations each hour at 24 hour anchor stations

Julian Day Time (GMT)* Operations

114 1630 3,4,5,7
1730
1830
1930
2030
2130
2230
2330

115 0030
0130
0230
0330
0430
0530
0630
0730
0830
0930
1030
1130
1230
1330
1430
1530
1630
1730
1830
1900

*Times are nominal; see station logs on file with USGS for
specific time and seguence of each operation.
**Refer to Table I for explanation.
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Moored instruments

Three GEOPROBES and 6 Supplemental Mooring Systems (SMS) were deployed and
recovered (see Fig. 2 for locations) during the April 1979 cruise. The GEOPROBE
is a tripod-mounted system of instruments (Fig. 4); it is described in detail
by Cacchione and Drake (1979). A SMS (Fig. 5) consists of a torsionally-rigid
spar buoy string with a Davis-Weller current meter (VMCM) (Davis and Weller,
preprint) on each mooring and an Oregon State University L.E.D. transmissometer
(Bartz et al., preprint) on 4 of the 5 moorings.

RESULTS

Geologic Sampling Surficial Sediment

Figure 6 illustrates the areal distribution of mean grain size of surficial
sediment on San Pedro shelf. Data presented in Figure 6 are derived from an
earlier study of San Pedro shelf sediment (Karl, 1976). Surficial sediment con-
sists mainly of a thin blanket of modern very fine sands and coarse silts inter-
rupted by patches of relict medium and coarse sands. Basically textural isopleths
tend to parallel isobaths. In the area near the head of San Gabriel Canyon,
however, textural isopleths deviate from this pattern and cut across isobaths.

Bedforms

Figure 7 shows the location of TV stations and bottom photographs. By
matching the bedforms illustrated in Figures 8 and 9 with the respective station
locations in Figure 7, it is seen that there is a progressive change seaward
from well-developed ripples nearshore to biogenically reworked sediment in
deeper water. The change from physically generated bedforms to biogenic
structures occurs between the 40 and 45 m isobaths. Other areas of the shelf,
notably the area around the shelf break, are distinguished by rocky bottom and
coarse sediment. Two morphological types of ripples were observed during the
cruise. One type, designated Type A (Fig. 8a,b), which occurs shallower than
about 25 m on a substrate of fine and medium sand, consists of double sets of
ripples of unequal wave length with orthogonally intersecting crests. The longer
wave length (15-20 cm) ripples strike approximately east-west to east-southeast
and the shorter wavelength (5-10 cm) ripples approximately north-south to north-
northeast. Bifurcating, symmetrical ripples (eg., Fig. 8c), striking approximately
east-west to east-southeast, were observed in deeper water.

Geophysical Surveys

Geophysical surveys were primarily designed to establish the morphological
character of the seabed at the moored instrument sites. Consequently, line
placement and density does not provide good systematic coverage of the shelf.

In Figure 10 we show an example of the morphology across the shelf break in to
Newport submarine canyon. Since the SPEX project deals mainly with sediment
dynamics, we do not present additional geophysical records here. Detailed
geophysics of the area can be found in the report by Greene et al. (in press) on
the seismic structure of the southern California region.
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OBSERVATIONS

Figure 20. Histogram and statistics of basic pressure data - G1B
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Histograms of temperature data taken with the upper sensors on GlB and G2
are shown in Figure 21 and Figure 22, respectively. The higher variability in
near-bottom temperatures at the shallower site is obvious in these plots. The
variance in temperatures is nearly an order of magnitude greater at GLB than at
G2. Again, this difference is primarily due to the tidal and subtidal temperature
changes discussed above.

(3) light transmission and light scattering. The light scattering data from
the nephelometers are uneventful, as indicated by the extremely low variance values
in Table IV. This result primarily arises from the small amounts of TSM at each
site.

Light transmission, however, is more sensitive than 90° scattering at low
TSM concentrations, and is more useful in this study. The absolute values of
transmission and scattering for each Geoprobe (Table IV) are relative units that
do not include instrument calibrations. Therefore, the numerical differences in
mean, maximum, and minimum between G1lB and G2 (Table IV) are not significant.
However, their sense is correct; that is, considerably more turbid water was
present at G1B than at G2, as the higher mean at G1B would the spread of values
in the histograms, quantitatively indicated by the standard deviations, shows
that hourly turbidity levels at GLB were more variable (Figs. 23 and 24).

Time-series plots of light transmission clearly document the greater
turbidity fluctuations at the shallow site (Figs. 18 and 19). Changes of up to
50% transmission (relative) occur several times over two consecutive hourly
measurements at G1lB (e.g., on May 8). By contrast, consistently high values of
light transmission were measured at the deeper site (Fig. 19) throughout the
record, except for periods when the optics were probably fouled (e.g., on May 11
on May 11 and May 17). A period of more variable turbidity did occur at G2
during May 4-6, with maximum changes of about 15% transmission.

(4) current speed and direction. The data for current speed and direction
sampled in the basic modes are taken with a Savonius rotor and small vane. The
rotor provides an average speed over the basic interval; whereas the vane gives
a single, instantaneous measurement of current direction during each interval.
Table IV shows that the mean rotor speed at G2 was relatively low (~3 cm/s).

The record for GlA had a mean speed over the 5 days of about 12 cm/s. The mean
speed for GLlB over the first twenty days was ~11 cm/s (Table IV). Maximum hourly-
averaged current speeds did reach 20 cm/s at GLB; G2 had a maximum of only 9.8 cm/s.

The low speeds in the statistics for G2 in Table IV are the result of a
malfunction in the rotor. Therefore these statistics are unreliable; the burst-
averaged current speeds for the electromagnetic speed sensors (see below) should
be used in lieu of the G2 rotor results.

In all three Geoprobe records, the long-term mean flow direction was pre-
dominantly south-southwesterly (Table IV). This flow direction implies net
offshore movement of the near-bottom water.

Time-series plots of current speed and current direction show that, although
the tidal signature can be discerned in the currents at GlB (Fig. 18) and G2
(Fig. 19), the records have irregular fluctuations superimposed on the tidal
signals that suggest significant motions at supratidal frequencies. These motions
are probably the result of propagating internal gravity waves and are discussed
below.

Current directions also show a tidal variation, with superimposed, higher
frequency changes. The deeper measurements at G2 have greater occurrence of
these higher frequency motions, particularly during the period of April 29 -

May 3.
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OBSERVATIONS

Figure 21. Histogram and statistics of temperature data (upper sensor) -
G1B
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OBSERVATIONS

Figure 22. Histogram and statistics of temperature data (upper sensor} -
G2 :
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OBSERVATIONS

Figure 23. Histogram and statistics of light transmission data -
G1B
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OBSERVATIONS

Figure 24 .

Histogram and statistics of light transmission data -

G2
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Burst data

(1) low frequency motions. The four electromagnetic current meters on each
tripod provided measurements of bottom currents at four levels in the burst
mode (Cacchione and Drake, 1979). The pressure sensor was also sampled in this
mode to provide surface wave data. As discussed above, the pressure sensor on
G2 did not operate during the entire experiment.

Each electromagnetic current sensor measured horizontal speeds of two
orthogonal components once each second over the entire burst (Table III). These
measurements of horizontal components were first rotated by computer calculations
to produce north-south (v} and east-west (u) speed components. Current vectors
representing each one-second measurement were then computed with magnitude, s,
and direction, 0.

s = (u2 + v2) 172 ; 8 = tan -1 % (1).

Appendix D contains plots of s and pressure (p) for bursts samples taken at GlB
and G2. A plot for every second day at 1230 local time is shown for G1B to
document the variability in wave motion at the shallower location over the 40
day experiment.

The horizontal speed components, u and v, were also averaged over each
burst, to estimate average speed, s , and direction, é

_ N _ N
us= € u, ; v= € Vv,
.. 1 . 1
i=1 1=1
N N
(2).
s=@24vH Y2, fstan X

u

In the cases of GIB and G2, N = 100; for GlA, N = 72. s and 6 are hourly burst
averages of the data from electromagnetic (e-m) current sensors on GlB and G2.
For GlA, they represent burst averages obtained every 7.5 minutes.

s values are plotted for the long-term records in Figure 25 (G1B) and
Figure 26 (G2). These data are considered to be accurate to about 1 cm/s. The
upper e-m current meter (CM4) and the rotor speed data on both tripods were
coherent throughout the records. Based on analysis of Geoprobe photographs, the
severe fouling of the sensors, and the nature of the speed curves in Figure 25,
we feel that the speed values beyond day 32 (May 28) are unreliable and consis-
tently low. The burst averages, s , for the short term deployment, GlA, are
shown in Figure 27.

Inspection of Figures 25-27 indicates three important features: (1) tidal
current speeds are relatively low in the long-term records (Figs. 25 and 26);

(2) bottom current speeds at the shallow and deep sites have similar magnitudes;
and (3) speed fluctuations at supratidal frequencies are significant. Figure 27
clearly shows higher frequency oscillations in current speed superimposed on the
tidal currents. In Figure 25 there are about 10 current speed maxima every

3 hours, corresponding to a periodicity of about 30-40 minutes. At the lower
resolutions in the longer-term records in Fiqures 25 and 26, there are typically
8 current maxima each day, which suggests a periodicity of about 6 hours. Both
of these motions (0.5 hours and 6 hours) are probably caused by internal waves.
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Appendix A contains the results of our time-series analysis of e-m current
sensors CM4 (uppermost) and CML (lowest) on G1B and G2. A similar analysis for
CM4 (uppermost) on GlA is also presented there. Histograms and statistics for
each of these sensors (Figs. A-~1, A-7, A-13, A-19, A-25) illustrate the
predominantly low speeds throughout the experiment. The increased frequency
of occurrence of higher speeds at the upper e-m (e.g., Figs. A-1 and A-7) also
demonstrates the decreasing velocity magnitudes in the bottom boundary layer,
indicative that the Geoprobes were actually within the frictional bottom layer.

The speed data in Appendix A have also been plotted as N-S and E-W
components (Figs. A-2 and A-3 for CM4 on G1B, and Figs. A-14 and A-15 for
CM4 on G2). These component plots show the tidal periodicities more clearly
than the total speed plots., There is some indication in the diminishing speed
values for CM4 at G1lB (Fig. A-3) that this sensor was malfunctioning after
about May 28.

The kinetic energy spectra for the upper sensors at each long-term site
show the dominance of tidal energy. Figure A-5 demonstrates the nearly equal
tidal peaks at the diurnal (K;) and semi-diurnal (M,) periods. By contrast,
Figure 2-17 at G2 shows lower energy at both tidal frequencies by about an order
of magnitude, and a marked decrease in the Kj tide relative to the M, tide. Similar
changes in offshore tidal energetics have been reported for current records taken
off southern California by Winant and Davis (personal communcations). The kinetic
energy spectra of N-S (v) and E-W (u) components (Fig. A-6 and Fig. A-18) further
show the tidal energy is greatest for the u component at both semi-diurmal and
diurnal frequencies. This result suggests that the tide has its most intense
motion nearly parallel to the bottom contours.

Another important and as yet unexplained result is that the rotary spectra
for the e-m current data at the shallow site show that the K;, tide propagates in
a counterclockwise direction (Fig. A-6 and A-12). The data at G2, however, do not
show a similar Ky tidal rotation (Figs. A-18 and A-24). There is some indication
that at G2, the Kj tidal motion is clockwise. This suggests a decoupling in the
lower frequency tidal motion between these two sites.

It is also worth noting that the inertial period (frequency) for this shelf
region is about 21.5 hours (4.7 x 10™2 cph). The kinetic energy (K.E.) spectra
for all e-m sensors (e.g., Fig. A-5) show, at most, a small peak in current energy
at or near the inertial period. This result also agrees with other current meter
data taken on southern California shelves (Winant, personal communication).

The K.E. spectra show significant peaks at frequencies in the internal wave band.
The cut-off frequency in the spectra for the long-term measurements is 0.5 cycles/
hour (2 hour period). sSignificant spectral energy peaks occur at about 2.0, 5.0,
6.5, and 8.0 hours at G1B (Fig. A-5) and at about 2.0, 4.6, 6.0, and 8.0 hours at
G2 (Fig. A-17). A smaller spectral peak also occurs at 3.5 hours at G2 (Fig. A-17).
These peaks probably represent internal waves propagating over the shelf from off-
shore generating regions (Cacchione and Drake, 1976).

The K, E. spectra for GlA (short-term) resolves energy content to a cut-
off frequency of 4 cycles/hour (15 minute period). Figure A-28 shows several
significant spectral peaks at relatively high frequencies, particularly at 18,

24, 36, and 54 minutes. The peak at 3.0 hours is also significant at the 95%
confidence interval. These high frequency internal waves are probably
responsible for the irregular motion seen in the data in Figure 9.

Finally, the long-term measurements show an extremely important result
for transport of near-bottom materials: over the 40 days of the experiment,
the net movement of materials was offshore, towards the south-southwest. The
progressive vector diagrams in Appendix A indicate the path a particle would
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take if responding to the flow measured at each site. For example, at G2

(Fig. A-=16), the net transport at 1 meter above the sea floor for the period
April 20-26 was southeasterly at about 5 km/day (5.8 cm/s); and from April 26

to May 30 the flow was southwesterly at about 2.6 km/day (3.1 cm/s). This latter
net flow speed also occurred at the lowest e-m sensor on G2 (Fig. A-22).

At G1B, the net transport was more variable in direction and less intense,
trending south~southwesterly at 1 m above the bottom from April 27 to June 2,
with several days of easterly flow interspersed (Fig. A-4). The net flow over
the entire period to June 6 was southwesterly at about 0.4 km/day (0.4 cm/s). At
the lowest e-m sensor on GlB, the net rate was southerly at about l.1 km/day
(1.2 cm/s). The net flow at the shallower site, therefore, was considerably slower
than the net flow at G2.

One further aspect of the progressive vector diagrams is the turning in net
flow direction from lower to uppermost current sensor (Fig. A-16 and A-22). This
veering is consistent with the other e-m current sensor progressive vectors results
(not shown). Quite possibly this turning is a result of Ekman veering in the
lower part of the bottom turbulent Ekman layer.

(2) surface wave data. The burst data from pressure and e-m sensors
provide synoptic measures of surface wave effects at the sea floor. Examples
of these data are shown in Figure 28 and Figure 29 for GlB and G2, respectively.
These plots contain one hundred points for each e-m sensor, with speed, s ,
computed from equation (1). The corresponding pressure record is also plotted
for Gl1B., A selected group of similar plots is provided in Appendix B. These
plots are included to document the variable wave conditions and to show actual
bottom speeds due to surface waves.

The most impressive feature in the wave records, particularly at the shallow
site, is the rhythmic oscillations in bottom pressure due to the swell. The
bottom pressures illustrated in Figure 28 correspond to surface waves with
heights, H , of about 0.7 meters, Average wave period, T, over the record in
Figure 28 is about 12.8 seconds. The wave length, L, corresponding to this
average period can be calculated from linear wave theory (Kinsman, 1965). In this
case, L =~ 177 meters. The maximum horizontal bottom speeds due to surface waves
in the plots occurred on May 27 at site GlB (Appendix B). The peak wave speeds
were above 25 cm/s. This high wave surge was caused by the low frequency swell
evident in the pressure record (T = 18 sec.).

DISCUSSION
Substrate

Because grain-size distribution shown in Figure 7 is based on the results
of a previous study (Karl, 1976), the areal trends are not interpreted in detail
in this report. The samples collected during this experiment were used only to
establish the grain-size distributions at Geoprobe and SMS sites. By calculating
shear stresses at the Geoprobe sites, it is then possible, using grain-size data, to
estimate the frequency with which sediment at these sites is being transported.
Of interest on Figure 6 is the zone of fine-grained sediment on the shelf adjacent
to San Gabriel Canyon. As discussed by Karl (1980a) this zone may represent a
corridor for the seasonal and episodic preferential transport of suspended
particulate matter; thus pollutants released near the area would be preferentially
transported toward the head of San Gabriel Canyon. As noted by Karl (1980a),
this corridor is best defined during the winter and may not be active during the
spring and summer.
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Geophysical surveys were made primarily to establish the morphology of the
sea~floor at each of the instrument sites, and we lack sufficient data to make
meaningful interpretations of sub-bottom profiles and assessments of potential
geologic hazards. The line shown in Figure 10 is an example of extensive slumping
along the walls of Newport Canyon. This slumping may result from sediment loading
caused by high rates of mud deposition. This suggests that, although Newport
Canyon may no longer be active as a "sand" canyon (Felix and Gorsline, 1971), it
is a depositional site for fine-grained material, and it is a potential sink for
pollutants released and dispersed on San Pedro shelf to the east of San Gabriel
Canyon. For a detailed evaluation of other potential geologic hazards on San Pedro
shelf, we refer the reader to the report by Greene et al. (in press).

Bedforms

Well-developed ripples on the shelf reflect the periodic transport of sediment
as bedload. The origin of the type A ripple geometry is not clear. ZKXarl (1976)
suggested four possible mechanisms for generation of these ripples; one of these
included formation by interfering wave trains.

Waves approach San Pedro shelf through corridors from the west and south.
Islands and banks tend to attenuate long period (15-20 sec) swell from the west
(Horrer, 1950), leaving short (7-10 sec) period waves to pass relatively free of
interference. Long period waves propagating from the south reach the shelf
without interruption. Short period waves from the west interferring with these
long period swell from the south could account for type A ripples observed at
Geoprobe site 1 and other shallow stations. Although data from G1B indicates
that wave generated currents were, at times, sufficiently strong (>20 cm/s) to
form ripples, we cannot deduce wave direction; hence the origin of type A ripples
remains problematic.

The symmetrical ripples occurring on deeper areas of the shelf can be
attributed to long period surface waves propagating from the southern hemisphere.
Data from the Geoprobes support a surface wave genesis for these bedforms. Mean
velocities (>1 - 3 cm/s) are too low to move sediment as bedload, but instantaneous
wave velocities (>20 cm/s) are easily capable of moving bedload particles at both
Geoprobe sites (Appendix E). The progressive change from biogenically-reworked
sediment on the outer shelf to well-developed wave ripples nearshore reflects a
gradual increase of energy characteristic of shoaling surface waves. Thus, the
distribution, orientation and morphology of small-scale bedforms on San Pedro
shelf are consistent with a surface wave origin (see also Karl, 1975). It could
not be determined how many, if any, of these bedforms were remnant features from
large storms passing through the area before the April cruise.

Water Column

Upwelling typically occurs along the southern California coast from March
through June. Figures 11, 12, 14 and 15 show that during the 8 day period between
19-27 April, cold and dense water moved from the upper slope off Point Fermin
(Palos Verdes Peninsula) onto the shelf where it spread southeastward. Net transport
near the bottom, integrated over 1.5 m above the bottom, during this period as
measured at both Geoprobe sites was to the southeast (Figs. A-22, A-27). Between
26 and 27 April net current direction changed dramatically to southerly flow and
remained persistently south-southwest for the rest of the experiment (A-22).

Wind is the most common mechanism forcing an upwelling event. The closest good
wind measurements to the study area are made at Long Beach Airport. A progressive
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vector diagram of resultant wind direction from 8 April to 7 June shows that from
16-27 April this wind was southwesterly blowing from 250° (Fig. 29). Prior to

16 April and after 27 April the wind was southerly from about 125°. These changes
in wind direction correlate with the changes in near-bottom net current direction on
27 April from southeastward to southward flow.

In the northern hemisphere, surface water moves to the right of the prevailing
wind. Thus a southwesterly wind accounts for the southeasterly surface drift currents.
In deep water (>100 m), the anticyclonic spiralling continues unimpeded to produce a
fully developed Ekman spiral. In shallow shelf waters, frictional resistance of the
sea-floor prevents full development of the surface Ekman spiral. In fact, a reverse
spiral may develop from the sea-floor upward. The CTD profiles evince a three-layer
system on San Pedro shelf; the surface layer separated fromthe bottom layer by a
relatively strong pycnocline. Net flow directions measured by the E-M current
meters indicate Ekman veering, described further in subsequent paragraphs, within 1 m
of the bottom at both Geoprobe sites. Although both the surface water and near-bottom
water are flowing southeasterly during an upwelling event, the former may be governed
by the surface winds whereas the latter may be influenced by bottom friction.

Because we lack measurements in mid-water depths, we are uncertain as to flow
directions in this zone. Thus, we cannot establish whether or not the whole shelf
system responds as a unit to westerly wind stress.

CTD and transmission profiles suggest that a mid-water wedge of relatively
cold, dense and clear water is moving shoreward (Figs. 11-13). If this is the case,
then offshore flow at the surface and bottomwould balance the volume of mid-depth
water driven shoreward and to the surface by the wind stress. Data from the Coastal
Upwelling Experimental Analysis (CUEA) program off the Oregon-Washington coast and
off Peru show that offshore drift at the bottom is replenished by upwelling waters
flowing onshore at mid-water depths (personal cummunication, D. Halpern, 1978;

Brink et al., 1978; O'Brien et al., 1978).

The nature of the isopycnals in Figures 12 and 16 suggest a more complex flow
pattern than simple southeasterly drift over the whole shelf during an upwelling
event. The 25.75 sigmaj.surface slopes upward from both the northeast and southwest
to form a ridge that crests at 20 m below the water surface (Figs. 12 and 16). The
isopycnals slope more steeply away from the crest of the ridge to the southwest than
to the northeast. This indicates a southeasterly flowing current on the seaward
side of the "ridge" and a weaker northwesterly drift on the landward side. Thus,
upwelling may generate or reinforce a cyclonic eddy in San Pedro Bay. This inter-
pretation is supported by data compiled from satellite images discussed by Pirie
et al. (1975).

Because we have no regional hydrographic data after 28 April, we cannot discuss
the non-upwelling situation in detail. The persistent southerly flow near-bottom
correlates with steady winds from about 195°. We speculate that the southerly wind
pushes surface water landward. The configuration of the coast line traps the surface
water causing a warm water wedge nearshore. This may generate a coastal downwelling
which possibly explains the net offshore drift at the sea-floor.

The importance of local coastal upwelling to pollutant transport is illustrated
by the dramatic effect it produces on the distribution of suspended particulate matter.
On 19 April, just after the onset of upwelling, the water column, except very
close to shore, was relatively non-turbid (Fig. 1lla). By 27 April, after upwelling
conditions were fully developed, transmission profiles show highly turbid zones at
the surface and bottom (Fig. 11b), Currents generated during the upwelling regime
advected seaward nearshore surface particulate matter, present in concentrations
higher than normally expected during spring owing to terrigenous input from rains
several weeks prior to data collection, and particles near the bottom resuspended
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DAILY MEAN WIND VECTORS

LONG BEACH, CALIFORNIA
APRIL 8 — JUNE 7, 1978
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50 KM

Figure 29. Daily mean wind vectors measured at Long Beach
Airport.
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by waves and other processes in shallow water. Much of the TSM settles out of the
water column as it crosses the central shelf, never reaching the shelf break, on
the broad section of shelf between San Pedro Sea Valley and San Gabriel Canyon
(Fig. 17). This, in part, explains the rocky outcrops and coarser sediment found
on the outer shelf in this region. The finest particles advected to the shelf break
are winnowed from the bottom sediment and dispersed by current activity at the
shelf break. 1In contrast, high concentrations of TSM blanket the entire segment of
shelf between San Gabriel Canyon and Newport Canyon (Fig. 17). The higher rates of
deposition account for the finer-grained surface sediment and thicker accumulations
of unconsolidated sediment on the shelf and slope and in and around Newport Canyon.
This segment of the shelf and slope would presumably be an important sink for
pollutants as well.

The measurements of low frequency motions near the sea floor at both Geoprobe
sites suggest that over the approximately 40 days during fair weather the net
transport of near-battom suspended matter materials is offshore, with a slightly
higher transport rate at the deeper site. Measured offshore velocities are about
3.1 cm/s and 0.4 cm/s at G1B and G2, respectively. Evidence of Ekman veering
within the bottom 1 m of the water column is apparent in the Geoprobe velocity data;
this veering will require an integrated estimate of flow direction in the bottom
layer to represent more accurately the transport paths of suspended materials.

Weatherly (1977) measured Ekman veering in the Straits of Florida from current
meter data taken 1 m and 3 m above the sea floor; mean veering was about 10° and
maximum veering was about 27°., Our data suggest a veering of 10° to 20° between
20 cm and 1 m above the bottom at both shelf sites. Weatherly (1977) also shows
that the thickness (D) of the bottom Ekman layer can be estimated from the velocity
shear (u,) as:

where f is inertial frequency (8.13 x 10—5 sec _l). For a daily average u, of
0.5 cm/s (see below), D = 24 m. This estimate of layer thickness is consistent
with the measured thickness of the turbid bottom layer (Fig. 13).

The potential importance of internal waves in transport of near-bottom
sediment on continental shelves has been discussed by Lafond (1961) and Cacchione
and Southard (1974) and Cacchione et al. (1976). Bottom currents due to internal
waves were present at both Geoprobe sites. These currents were superimposed on
tidal and other lower frequency motions. Although the internal wave-induced
velocities were less than 15 cm/s at 1 m above the bottom, the bottom-stresses
which they cause are additive to the stresses from the other major fluid motions.
Cacchione and Southard (1974) provide a technique for estimating the largest
sediment sizes (i.e., largest diameters, D,) that can be moved by internal waves
of amplitude, ags and frequency, w, on a continental shelf.

1.5
Di/ao = KW / c h/ho.

2
2w - f . . Lo . .
c = N -2 N is the Brunt Vaisala or stability frequency; f is inertial

frequency; h is local water depth; h, is depth at the shelf edge, and K is a
dimensional constant (K =~ 2.8 x 10"3). N can be calculated from the formula:

v o= (g dp y 172
o de

5 is mean water density and dp/dh is the vertical density gradient.
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We found internal waves of several frequencies in our spectral analysis of
currents. If we select typical internal wave periods, T, of 24 minutes and
6 hours for GlA and G2, respectively, then the following parameters can be
estimated:

GlA G2

T 24 min. -3 -1 6 hrs. _ -1
w 4.36 x 10 sec 2.91 x 10 sec

- - - -1
N 2.12 x 10 2 sec 1 1l.16 x 10 2 sec
C 0.211 0.024
D./a 1.3 x 10°° 7.01 x 107"
i’ o

The Di/a0 values indicate that for internal waves of 5 m amplitudes, Di

would be 6.5 x 10-2 mm and 3.5 x 10_3 mm at GlA and G2, respectively. These
estimates of the larges diameters that can be moved by 5 m internal waves of
measured frequencies suggest that this process is not, by itself, significant
for initial motion of bottom materials. The presence of these internal waves,
however, can have significant effects on transport of suspended materials as
discussed by Cacchione et al. (1976).

The highest frequency motions present in our data, surface waves, have their
most important effects at shallower locations on the shelf. The maximum wave
stress on the bed at GlB can be estimated using the theoretical model for
oscillation bottom stress given by Smith (1977). With wave periods of 12 seconds,
maximum wave speed at the bottom of 20 cm/s, and an estimated bed roughness of
0.1 cm, the maximum shear velocity is about 2.7 cm/s. This wave-induced shear
velocity is high enough to cause sediment entrainment and to form wave-generated
ripples. This result agrees with bottom photographs at GlA and at other shallow
(<30-40 m) sites on the San Pedro shelf.

Bottom currents due to surface waves propagating over continental shelves
can produce bedforms and initiate bottom sediment movement in relatively deep
water (Komar et al., 1972). The effectiveness of these waves in disturbing the
bottom sediments depends primarily on the wave heights and wave periods. During
the 40 day experiment fair weather prevailed over the San Pedro shelf area, and
close examination of the burst pressure records from GlB shows that wave heights
were low to moderate (<2 m). However, low amplitude, long period swells propagating
from the west to southwest were observed during both cruises. These swells are
easily seen in the burst pressure data, particularly in Figure 26. The waves are
typically smooth indulations in the pressure record, corresponding to a smooth,
regular oscillation of the sea surface. Typical swell periods were 12 to 14
seconds; typical swell heights were 0.5 to 1.5 meters (Appendix E).

To evaluate the intensity and variability of the wave currents over the
40 day experiment, the variance in the burst current data was calculated for
each tripod and is shown in Figure 28. The variance in each burst is related
" to the kinetic energy in the fluctuating part of the currents; i.e., the energy
in the wave-induced motions at each sensor level. The square root of the variance
values in Figure 28 is essentially the r-m-s wave current for each sensor. The
variance in the burst pressure data is related to the bottom pressure fluctuations
and has not been converted to wave height estimates. The pressure variance in
indicative of changes in wave height and/or wave period.

Two striking features are evident in Figure 30. (1) Although local winds
were generally light to moderate, the wave currents at GlB were significantly
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energetic during several periods, particularly during May 4-8 and May 27-30. The
r-m-s fluctuating currents during these periods were 12-14 cm/s at GlB, suggesting
that wave currents were high enough to induce bottom sediment movement during those
periods (Komar et al., 1972). (2) The deeper site had relatively low wave energy
throughout the record except for a marked increase during the May 4-8 period.
RMS speeds were less than 4.5 cm/s during that time, indicating that these waves
could not, by their own action, transport bottom sediment and form ripple marks.

Sediment data taken previously (Karl, 1976) at the Geoprobe sites indicate
that the mean sizes are about 0.3 mm and 0.10 mm at G1B and G2, respectively.
Sternberg (1972) and others have shown that mean sizes correspond to a critical
shear velocity, Usg o that is necessary for bottom sediment motion to occur.
The ux, values for sediments at G1B and G2 are 1.4 cm/s and 1.0 cm/s, respectively.
Figure 29 contains the computed ux values based on the velocity profiles measured
with the e-m current sensors on each tripod. One ux value is computed and plotted
for each burst. The technique for the u, computations is described by Cacchione
and Drake (1979). It should be noted here that the us values do not include the
effects of wave stresses (i.e., burst averages have been used in the computations).
The additional effect of waves will be small except during May 4-8 and May 27-30
at G1B.

The us values suggest that usx < Uxg is typical over most of the record,
with some short periods of ux 2 Usx,. Bottom sediment is generally not being moved
by the hourly-averaged currents at the Geqprobe sites, except at times when
Ux > Uxg.

Figure 29 also shows pressure (GlB only), current speed (CM-4) and light
transmission for each tripod. The ux record is similar to the current record
at CM-4, not a surprising result since the current speeds are used to compute u.

CONCLUSIONS

Observations of numerous oceanic parameters over forty days of early spring,
fair-weather conditions clearly reveal the complex sediment dynamics of the
continental shelf. Surface waves, internal waves, and tides contribute to and are
superimposed on a mean flow which also responds to meteorological forcing; these
interact to produce the circulation system and sediment transport patterns charac-
terizing San Pedro Bay. Storms, which were not encountered during the experiment,
would substantially modify the fair-weather system observed by us and described in
the following paragraphs.

No single process dominates sediment transport on San Pedro shelf in the way,
for instance, that tides control deposition in Cook Inlet, Alaska or that large
surface waves predominate on the Oregon and Washington shelf. Instead, several
processes are more or less in balance with one another. The relative importance
of these processes, however, varies spatially and temporally. For example,
shoaling surface waves affect bottom sediments more in shallow water than deep
water and concentrate more energy at points of convergence than divergence. Also,
there are times when packets of more energetic waves approach the shelf, thereby
intensifying bottom currents and making a proportionately greater contribution to
incipient sediment movement than other processes. While these various processes
can initiate sediment motion, we found that local coastal upwelling had the most
profound effect onmean circulation, and hence, sediment dispersal in San Pedro
Bay during our experiment.

Local wind direction seems to govern upwelling in San Pedro Bay. We observed
that a shift in wind direction from southerly to southwesterly initiated upwelling.
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APPENDIX A

Time-series analysis and plots of electromagnetic current
meter data for upper (100 cm) and lower (20 cm) sensor from
GlB (pages D-1 to D-12) and G2 (pages D-13 to D-24). Similar

plots for the upper (100 cm) sensor on GlA are shown (pages
D-25 to D-29).

Burst data represent burst averages as described in
text.
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STATISTICS AND HISTOBRAMS OF CURRENTS AT cmd - 3SPEX B2 1978
LOCATION = LAT 33 35N, LONG 118 18w, DEPTH = 60 METERS
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KINETIC ENERGY SPECTRUM OF CURRENTS AT cM4 - SPEX G2 1978
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STATISTICS AND HISTOGRAMS OF CURRENTS AT cml — SPEX G2 1978

LOCRTION = LAT 33 35N, LONG 118 12w, pDEPTH = 60 METERS
0BSERVATION PERIOD = 0000 20 APR 78 TO 2300 29 MAY 78 ¢ 40.0 paAvys)
N = 960 pr = 1.00 HoOURs, UNITS = (cM/SeC)
MEAN VARIANCE ST-DEV SKEW KURT MAX MIN
s 4.280 6.11 2.47 0.577 3.522 16.82 0.00
] 0.16 11.54 3.40 -0.283 4.146 i4y.74 -13.689
v -3.14 8.67 2.985 0.061 21875 6.15 -12.186
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KILOMETERS

PROGRESSIVE VECTOR DIAGRAM OF CURRE
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(cm/secz/cph)

KINETIC ENERGY SPECTRUM OF CURRENTS AT cM! - SPEX G2 1978
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STATISTICS AND HIS g L‘sms o= CURRENTS ﬁT cn4 - SPEX IH 1°7$ as
LOCATION = LAT N NTe) H = ™M
OBSERVHTION Pertop = 1200 &? APR %é TO 2@5 5 APR T8 } g g DAYS®

N 1248. pr = 7.50 mMirnuTES, UNITS = (cM/SEC)
MEAN VARTANCE ST-DEV SKEW KURT MAX MIN
s e.uy 19.22 3.50 0.8
U 66 3.10 . 0.388 8 .58 g.88 -18.8
v -o 67 ?7 40 3.?? 0. ?8 5,582 %e.qa -11.9?
= SPEED
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KILOMETERS

PROGRESSIVE VECTOR DIARGRAM OF CURRENTS8 AT cMd - SPEX 18 1478
LOCATION = LRT 33 4YyON, LONG W, DEPTH = 2! METERS
OHSERVATION_PERIOD = 1200 17 APr 78 TO £352 23 Apr 78 . 6.5 DAYS)
¢ every 0.3 vAays sBesinNdine AT 0000 I8 Aapr 78

0+ —r —_ —~+ £
« ] L ¥ L J L L | | |
'S

e 3 4 5 B T 8 8 10 11 i
KI'OMETERS

A-27



KINETIC ENERGY SPECTRUM OF CURRENTS m' cr44 - SPEX 1A ’??‘3
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APPENDIX B

Plots contain "burst" speed data taken with electromagnetic
current sensors at 20 cm (CMl), 50 cm (CM2), 70 cm (CM3), and
100 cm (CM4) above seafloor. Pressure data (PRS) is given in
meters of water. Note: GI1B is the Geoprobe in a mean depth of
24 meters; G2 is in a depth of about 67 meters.
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